
 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 1 / 20

Good practices for Medical Software

development environment setup

1. Goal of this publication

The goal of this publication is to help you in the setup of your medical software
development environment. The earlier you start with good practices application
the more value and time you will gain from it.

2. Targeted audience

The information gathered in this publication should be particularly useful for:

• Head of Software Development Team,
• Software Project Managers,
• DevOps team,
• Software developers.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 2 / 20

3. Table of content

1. Goal of this publication .. 1

2. Targeted audience ... 1

3. Table of content ..2

4. Introduction .. 3

5. Good practices .. 3

5.1. Source code management platform .. 3

5.2. Define coding guidelines .. 7

5.3. Setup automatic code formatting tools... 8

5.4. Pointers and references management .. 9

5.5. Exceptions and errors management .. 9

5.6. Use of event logging ... 10

5.7. User input validation & sanitization ... 10

5.8. User of compiler warnings and errors .. 10

5.9. Testing tools .. 11

5.10. Continuous integration .. 12

5.11. Management of external libraries ... 13

5.12. SBOM and CVE generation ... 13

5.13. Static Application Security Testing Tools ... 15

5.14. Issues & Tasks management system ... 16

5.15. Systems for technical documentation writing... 18

6. Applicable regulatory landscape ... 19

7. Authors .. 19

8. Next steps ... 20

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 3 / 20

4. Introduction

Software innovation often starts with the writing of a significant number of lines of
code to test the feasibility of an idea. Code clarity, structure and testing may not
be perceived as priorities in this phase. Once first positive results are obtained it is
easy to fall into a loop where more and more code and features are added but no
significant effort is put on the code clarity, maintainability, and robustness. This
can easily result in a chaotic situation where it becomes very hard for a developer
to update or even just fix a piece of code written by someone else or even worse
written by themselves some months ago.

The more developers you have the higher the challenge to ensure good
productivity. To allow your company to follow a fast innovation track, you need to
start as soon as possible with good practices and collaborative software
development culture.

In this publication, Debiotech experts will describe what they perceive as the
essential tools and practices in software development in general, and for medical
software development specifically.

5. Good practices

5.1. Source code management platform

5.1.1. Basic code repository management

The source code management platform is the cornerstone of your development
environment. It is the basic tool for any developer even for single individual teams.
It allows you and your team to share and manage the different versions of your
source code. Finally, it ensures a decentralized backup to avoid the loss of long
hours of work in case of destruction or inaccessibility of your local data.

Multiple platforms exist, including:

• Git
• SVN
• Mercurial

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 4 / 20

Figure 1. Illustration of basic source code management platform item & features

Basic items are available within those platforms, including:

• Repositories: they are the basic containers of your source code and contain
a collection of files of different versions of a project.

• Branches: they are the main item allowing you to follow the different
versions of your code. A branch is an evolving entity that changes through
commits of code. Branches can be created and deleted; some will exist all
along the lifecycle of your product. More details about branch types and
structure are provided in the Chapter 5.1.3.

• Tags: they allow to identify specific versions of your code. A tag is a static
item associated to a given branch at a given point in time (and therefore to
a specific commit). It allows to quickly find important versions of your code
as for example: versions used for clinical trials and the ones used for your
deployed product.

Basic actions are available within those platforms, including:

• Basic actions associated to repositories:
o Create: it creates from scratch the centralized repository to store the

various branches of your code.
o Fork: it creates a deep copy (complete and independent copy) of the

centralized repository.
o Clone: it creates a local copy of your centralized repository.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 5 / 20

• Basic actions associated to branches:
o Checkout: to get a local copy of a given branch on your computer.
o Create: It creates a branch from an original one and keeps track of its

modifications independently from the ones of the original one.
o Commit: to put local changes within the corresponding branch of the

centralized repository.
o Merge: to update the content of a target branch with the

modifications performed on another branch. This does not copy and
replace the target branch but only push the modifications performed
on the merged branch. Therefore, those two branches can have
evolved independently before the merging and the modifications
brought on both branches will be combined. This can result in
conflicts (if modifications are brought to the same piece of code).
Conflicts resolving is not always straightforward but will not be
developed further within this publication.

o Pull request is described further in Chapter 5.1.2.
o Other features are available but will not be described further in this

publication.

• Basic actions associated to tags:
o Create tag: associate a specific commit with a tag that allows to

quickly identify it and retrieve the associated content.
o Get commit associated to a tag: get a local copy of the content

associated to the commit to which the tag is associated.

5.1.2. Advanced code repository management tools

Some advanced solutions exist to help you and your team in the management of
your source code repository and to create interfaces with other platform such as
task/issue management systems (refer to Chapter 5.14) and continuous
integration platforms. And finally, they provide user friendly code version
comparison tools that allow to quickly identify differences between branches or
commits.

Those advanced tools also give the possibility to define pre-requisites before
validating a commit in a controlled branch (development branch) for example:

• Pull request review and validation by different persons
• Continuous integration tests all successful.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 6 / 20

Figure 2. Pull request & Continuous integration principles illustration

Commonly used platforms include:

• Github
• Gitlab
• Bitbucket

Debiotech recommends you to:

• Integrate an issue management system to record features, user stories,
epics and bugs (refer to Chapter 5.14)

• Put in place peer reviews to review and approve pull requests.
• Implement a continuous integration environment, including :

o Static code analysis (refer to Chapters 5.12 & 5.13),
o Automated tests, ideally including hardware in the loop for embedded

systems (refer to Chapter 5.10).

5.1.3. Use of branch types and tags

During the development of your software multiple branches will be created. Each
branch has a different purpose and different characteristics.:

• You want to have branches that are stable and well tested for example for
demonstration to your customers or investors.

• Other branches should be opened and merged quickly to allow a developer
to work on a new feature freely before adding it to a more controlled branch.

• You will need dedicated branches that will correspond to your release
candidates.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 7 / 20

• Some branches will be there to provide hot fix for an identified bug on a
controlled branch.

• Finally in the medical device industry you will also need a branch for fully
tested (verification and validation) version that can be used for clinical
studies or as products.

To identify the different versions of your product, use tags on your main branch
(the branch with the highest level of control).

Debiotech recommends you to:

• Define different branch types,
• Adapt the automatic testing you perform on a branch depending on its type

(no need to perform complete testing for commit on a new feature branch),
• Clearly differentiate branches based on the level of control and security you

want to have on their content.

Figure 3. Illustration of possible branch type structure

5.2. Define coding guidelines

For clarity, homogeneity, and ease of review, you must establish common rules for
your own code, including:

• Naming conventions for variables, functions, and files,
• File and folder organization,
• Format for comments,
• Code indentation and formatting.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 8 / 20

Coding guidelines are specific to programming languages and shall not be applied
to external libraries. For the code developed by external partners, you should
request them to respect the guidelines you established or review and validate their
coding guidelines. Debiotech recommends that you choose to apply the same
coding guidelines for all projects in the same programming language. And perhaps
a naming convention to be used regardless of programming language would be to
include the unit information on all variables that contain physical units (distance,
weight, pressure, temperature, speed, etc.).

Debiotech does not recommend any specific naming conventions but here is an
example of a set of simple rules:

Name Convention
Class name Should start with uppercase letter and be a noun (e.g., String, Color, Button,

System, Thread, etc.)
Interface name Should start with uppercase letter and include an adjective (e.g., Runnable,

Remote, ActionListener, etc.)
Method name Should start with lowercase letter and include a verb (e.g., performAction (),

main(), print(), etc.)
Variable name Should start with lowercase letter (e.g., firstName, orderNumber, etc.)
Package name Should be in lowercase letter (e.g., java, lang, sql, util, etc.)
Constant name Should be in uppercase letter (e.g., RED, YELLOW, MAX_PRIORITY, etc.)

Table 1. Simple illustration of naming convention

5.3. Setup automatic code formatting tools

Having a homogeneous format for your source code is a way to simplify the work of
your developers and increase their productivity. They will be at ease with
consistent formatting while heterogenous formatting will use some of their energy
just because there is one space more or and additional empty line compared to
what they are used to.

You can define simple formatting rules and ask everyone to follow them, but why
wasting energy on this when automatic formatting solutions exist and are simple
to integrate in your development environment:

• Clang-format
• Astyle
• Uncrustify

Debiotech recommends you to:

• Integrate such automatic formatting tools,
• Run them automatically at every compiling request on modified files.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 9 / 20

Figure 4. Simple illustration of added value of code proper formatting

5.4. Pointers and references management

To optimize memory size and time to pass parameters to one function or to an
object, pointers and references are very useful. However, for critical code it is
recommended (for example by MISRA guidelines) to avoid the use of dynamic
memory allocation and therefore of pointers to dynamically allocated memory.

Therefore, Debiotech highly recommends to:

• For critical code (e.g. Class C software components as defined in IEC
62304): use references and static memory allocation instead of dynamic
memory allocation.

• For non-critical code: use smart pointers to help your developers in the
optimization of allocated memory but use references to pass inputs to
functions or objects.

5.5. Exceptions and errors management

When creating a new object or function, the developer usually has in mind what
values and behaviors are expected. It may seem so obvious that no control is done
during code execution. However, another developer might modify the code or
create new code that will take an unexpected path and result in non-expected
code execution, potentially leading to software crash. In a way, it is the ideal
scenario as this crash will push you to identify the root cause and fix it. In the worst
case this unexpected behavior is not perceived and results in inaccurate
performances that might endanger patients. Integrating simple exceptions and
errors throwing mechanism is a way to avoid those unexpected behaviors and to
help efficiently the developer to identify what’s wrong. However, it is common in
medical software development to forbid the use of exceptions to minimize
complexity, awkwardness, and performance overhead.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 10 / 20

Debiotech recommends to:
• Develop control mechanisms and propagate the information through errors.
• Associate errors with clear messages allowing to quickly identify their origin.
• Test your errors in your unit test and ensure 100% test coverage.

5.6. Use of event logging

To ensure traceability of software and hardware events, it is a common practice to
use event logging. It provides a standard and centralized way for applications and
operating systems to record important software and hardware events. The event
logging service records events from various sources, components or objects and
stores them in a single file: the log file.

Debiotech recommends to:

• Define different types of events to be logged (Debug, Warning, Error)
• For each component and for the different branch types log only the level of

events that is meaningful for this specific branch type.

5.7. User input validation & sanitization

Input sanitization is a cybersecurity measure of checking, cleaning, and filtering
data inputs from users, APIs, and web services of any unwanted characters and
strings to prevent unexpected behavior, crash or even injection of harmful codes
into the system.

Debiotech recommends to:

• Develop simple mechanisms to check data inputs validity: check length,
characters, string, and values.

• Block data inputs when invalid content is identified or filter out the
unexpected content and throw an exception to keep track of this event.

5.8. User of compiler warnings and errors

Congratulations, after adding an important feature or additional external libraries,
you finally get to the point where you have no more compilation error! Don’t stop
fighting and remove now all compilation warnings. They are usually the sign that
you do not have full control on your code cleanness, reliability, and robustness.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 11 / 20

Some of those warnings might look acceptable but having a warning free source
code is the only way to quickly identify new warnings that will block you further in
the development. If you already have 10 compilation warnings, having an additional
one might be perceived as a minor issue. While if you introduce compilation
warnings in a warning free code, you will quickly see them and process them.

Debiotech recommends to:

• Do not mask compiler warnings,
• Fix compiler warnings.

5.9. Testing tools

When adding new features or objects to your code, adding corresponding tests
should be mandatory. Errors and mistakes are human. They will always happen, the
earlier you identify them the less impact they will have on your productivity. Having
a systematic testing approach allows you to drastically improve work efficiency by
identifying where and when an error is introduced.

Multiple test level should be defined and run with different frequency or triggers.
Typical test levels are illustrated in the next figure:

Figure 5. Tests hierarchy illustration

In addition to develop your own testing tools Debiotech recommends using
existing solutions that can be easily tuned to match your needs. Here is a list of
some of those tools:

• VectorCAST

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 12 / 20

• Google test
• QtTest

Debiotech recommends you to:

• Avoid committing new modifications/features/object without providing its
respective unit test.

• Add integration testing of a new object/feature at least when you expect to
use this new object/feature in your code.

• Establish and perform system testing. This is the minimum level you should
implement, even for software systems that aren’t considered critical.

• Add performance testing, when relevant.

5.10. Continuous integration

The only way to ensure systematic testing at any commit or when committing into
critical branches (development, release, or main) is to integrate it in your
development environment using a continuous integration tool. In some cases, this
systematic testing cannot be performed at every commit because of the
necessary time to perform those tests. In this condition, you can define various set
of tests to perform at different frequency/triggers.

Multiple platforms exist to support continuous integration. The most used
platforms include:

• GitLab CI/CD
• Bamboo
• Jenkins
• CircleCI
• Azure Pipelines

Debiotech recommends you to setup your continuous integration platform to:

• Block a commit if build and compilation do not work.
• If you target multiple platforms or multiple versions, include all the targeted

platforms in this build and compilation verification.
• Systematically perform unit testing at commit into critical branches (if it is

not too much time consuming)
• Ideally perform systematically integration testing at commits into critical

branches (again if the total duration of testing is reasonable).
• For longer test runs (full integration and performance testing), perform

them at night, when the activity of your software development team is lower.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 13 / 20

• Daily review the results of those tests to ensure no test have been broken
by the commits of the previous day.

5.11. Management of external libraries

“Never reinvent the wheel and use available libraries” is a great advice for fast
innovation. Nevertheless, take only the wheel you need and not the entire car! You
can quickly get polluted with useless libraries. Build and compilation time quickly
increases with the number of libraries and the time you spend in cybersecurity
management is exponentially impacted by the number of libraries.

Debiotech recommends you to:

• Identify your needs and the available solution and check the associated
licenses and the known vulnerabilities before integrating a specific library.

• Keep track in a Software Bill Of Materials (manual or ideally automatic) of the
libraries you use, their version, their description and the reasons why you
use them.

• Every request for a new library to be integrated by a developer should be
reviewed and challenged before being approved.

Figure 6. Example of an automatically generated Software Bill Of Materials

5.12. SBOM and CVE generation

Quickly your software project will have a level of complexity that won’t allow you to
manually follow the libraries you use, their version, the associated license, and
other metadata. Reliable automatic code analysis tools exist and can automatically
do this work for you and bring you important additional features as Critical
Vulnerabilities identification. Those tools allow you to generate the Software Bill Of
Materials (SBOM) as well as the list of applicable Common Vulnerabilities
Enumeration (CVE).

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 14 / 20

For proper Cybersecurity management those tools and documents are a must
have and shall be used early in the development process, on a regular basis AND
during the entire lifetime of the product (even long after release to market). Those
tools will allow you to develop your Cybersecurity BOM, requested by the FDA in its
latest cybersecurity guidance. You can also perform this search for vulnerabilities
manually using CVE or NVD database for example.

Major build systems (e.g., Buildroot, Yocto) are able to generate SBOMs which
must preferably be in standard format like CycloneDX or SPDX. Alternatively, tools
that will automatically scan the projects dependencies can be used (e.g., using
makefiles for C/C++ projects or pip requirements for python).

Some of the well-known tools are WhiteSource or Black Duck.

Figure 7. Sample output of Black Duck SCA tool

 Debiotech recommends you to:

• Quickly integrate SBOM automatic generation tool in your software
development environment to follow use libraries, their version, their license,
and other metadata.

• Quickly integrate CVE automatic identification tool into your software
development environment to start rising awareness on cybersecurity
management within your team.

• Once your software development environment is fully setup, start
investigating more in details:

o Requirements for proper medical software development
management

o Requirements for Cybersecurity for your connected devices.
Debiotech will regularly publish expert opinions on those topics.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://cve.mitre.org/cve/search_cve_list.html
https://nvd.nist.gov/vuln/search
https://buildroot.org/
https://www.yoctoproject.org/
https://cyclonedx.org/
https://spdx.dev/
https://www.whitesourcesoftware.com/
https://www.blackducksoftware.com/

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 15 / 20

5.13. Static Application Security Testing Tools

5.13.1. Introduction

A very good practice to automatically detect bugs during development, also
recommended by UL 2900-1 18.1, is to regularly scan the code using a Static Code
Analysis tool (SCA, although SAST which stands for “Static Application Security
Testing” should be preferred to avoid confusion with “Software Composition
Analysis”).

SAST tools are available for any programming language. They analyze the source
code (and/or compiled code) without running it on the device to detect the most
common errors and security flaws.

A lot of different SAST tools are available on the market, whether they are open
source like Clazy or cppcheck, or commercial like Fortify or CodeSonar. Each of
them comes with pros and cons and must be selected based on the project needs
and integrated in the software development workflow as early as possible. To help
in this process, a list of SAST tools is maintained by the OWASP (click here to see
the list).

5.13.2. How to Select your SAST Tool?

First thing to consider is selecting a tool compatible with the used programming
language and ideally the used libraries and frameworks (this may avoid a lot of false
positive).

The tool must be able to detect a lot of error types, depending on the underlying
technology, like SQL injection if a database is used, hardcoded passwords for a
server application, or the well-known buffer overflows or null pointer dereference
in unmanaged languages like C and C++.

Being compliant with the common bug classification types, like OWASP Top
10 or CWE Top 25 and coding guidelines like MISRA C is a real plus. Some tools
like Perforce Klocwork or Parasoft C/C++test also come with standard compliance
certification for IEC 62304, which will exempt you from validating the tool and
automatically generate the required documentation.

https://apps.kde.org/fr/clazy/
http://cppcheck.sourceforge.net/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.grammatech.com/codesonar-cc
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://www.misra.org.uk/
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://www.parasoft.com/products/parasoft-c-ctest/

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 16 / 20

Figure 8. Fortify SAST is compatible with CWE classification

The next step is to ensure that the tool integrates smoothly with your development
workflow. Some questions that should be asked at this stage:

• Is it possible to run it automatically from the continuous integration server?
• Can it be integrated in the IDE to provide easy to understand feedback to the

developers?
• Can generated reports be customized?

5.13.3. Debiotech recommendations

Debiotech recommends you to:

• Identify the SAST tool that fits the best to your needs,
• Use a SAST tool as early as possible within your development process,
• Integrate the SAST tool within your continuous integration server,
• Integrate the SAST tool within your IDE to provide direct feedbacks to your

developers,
• Customize SAST tool reporting to your needs.

5.14. Issues & Tasks management system

To ensure completeness of your project and efficient development you will need
to define multiple tasks and assign them to members of your team. It is important
to make the distinction between project management tasks (for example: organize
risk analysis session, write down user manual, …) and development tasks (for
example: add a text field to display patient name). Both of those types of tasks
might benefit directly from task management software, but it is especially true for
development tasks where the number of tasks increases quickly and where the

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 17 / 20

level of details of the task (or sub-task) shall be important to ensure alignment
between expectations and deliverable content.

To ensure efficient collaborative development, you will quickly need tools to
ensure task management and follow-up. A list of tasks within an Excel document or
any similar document will quickly show its limitation. This document will require
giving editing rights to multiple users to update frequently the task list and the
tasks status. This quickly increases the risk of having unexpected edition and loss
of information and will limit the additional features you benefit from, as for
example: notification when a task changes status.

Commonly used task management platforms include but are not limited to:

• Jira,
• GitLab,
• Azure DevOps,
• Polarion.

For those reasons, Debiotech highly recommends you to:

• Setup a task management tool. No need for fancy brand new solution.
Simple task management platform already provides a significant set of
features that will increase the productivity of your team.

• Select a tool that allows:
o To create a task and to divide it into sub-tasks.
o To group task into sprints, features or targeted release versions.
o To define different task status. For example: Opened, assigned, on-

going, under review, closed and abandoned.
o To define different task priority levels (for example: High, medium and

low), expected delivery date and effective delivery date. No to be
used as a support to blame anyone but to be able to continuously
improve your planning skills.

o To block task deleting. Use “Abandoned” status instead to keep track
of what was thought as necessary or useful at some points.

o To define who has the rights to assign task to someone else. The rules
there should depend on the way you want to work. It is sometimes
useful to limit task assignment only to the software development
project manager. Within other teams, you might want each of your
developer to be able to assign tasks to other developers even if the

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 18 / 20

software development project manager might want to change this
assignment later.

o To generate reports at various times to have an overview of your task
management activities within a given period.

o To assign tasks to given software releases.
o Ideally select a tool that can integrate with a code repository

management platform to allow you to have automatic links between
code commits and tasks.

• Ensure your team updates the status of their tasks systematically and
immediately and not once a day or even worst once a week. Nothing worst
to have not fully updated tasks status.

• Congratulates your team on major task or task group achievements!

Finally, a last point that can be useful is to integrate your task management
platform with your technical documentation management platform to make links
between specifications or use cases and tasks and software versions.

This might allow you to have a complete traceability between your specifications
and test cases and your software versions. However, this is not mandatory and
might create more execution challenges than solve any real problem. Debiotech do
not recommend trying to develop such solution unless you really perceive a need
there.

5.15. Systems for technical documentation writing

A critically important activity for software and especially for medical software
development is technical documentation writing. Medical device regulations
impose multiple requirements on the content and structure of such
documentation. The way to structure such documentation, the items
characteristics and the different tools helping you in such writing will be the
subject of a specific publication by Debiotech.

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 19 / 20

6. Applicable regulatory landscape

This publication does not aim at answering completely to a specific standard or
regulation but provide recommendations on multiple aspects that should be
established early on in your development to ensure the efficiency of your team.
However, it covers directly or indirectly multiple requirements from following
standards and regulations:

• Europe: MDR
• US: CFR Title 21 Part 820,
• International: ISO 13485, IEC 62304, UL-2900-1/2

7. Authors

This publication has been written and reviewed by:

Rémi Charrier
Business Development Director
r.charrier@debiotech.com

João Budzinski
R&D Director

j.budzinski@debiotech.com

Laurent Colloud
Software Project Manager
l.colloud@debiotech.com

Gilles Forconi
Software Quality Manager
g.forconi@debiotech.com

mailto:r.charrier@debiotech.com
mailto:j.budzinski@debiotech.com
mailto:l.colloud@debiotech.com
mailto:g.forconi@debiotech.com

 Good practices for Medical Software 21 February 2022

DBT/PUB_2022_02_21 Page 20 / 20

8. Next steps

Debiotech is glad to have the opportunity to share its knowledge with innovative
companies from the MedTech industry. Your feedbacks on this publication are
welcome and will be used to update it or to create new publications on topics you
care about.

Continue your education on medical device development by:

• Accessing Debiotech historic publications:
https://www.debiotech.com/news-grid/

• Following Debiotech on LinkedIn to be notified on new publications:
https://www.linkedin.com/company/debiotech-sa

• Contacting us to ask a question or request personalized support:
contact@debiotech.com

Debiotech would be proud to be your partner and support you with:

• Medical device design & development services:
o Software: Digital Health, Firmware, Embedded, SaMD
o Electronics: Design, Verification and Validation
o Mechanics: Design for micro-fabrication & fluidics systems
o Supply chain development and optimization

• Support in medical innovation management:

o Market analysis and segmentation
o IP management
o Business plan consolidation
o Partnership development

http://www.debiotech.com/news-grid/
https://www.linkedin.com/company/debiotech-sa
mailto:contact@debiotech.com

