
 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 1 / 24

How to handle Cybersecurity for your
Medical Device?

1. Goal of this publication

The goal of this publication is to help you in the development of your device with a
focus on a very hot topic: Cybersecurity. With the content of this publication, you
will be able to understand how Cybersecurity (also called software security) can
impact your process of development and the design of your device.

2. Introduction

With the increasing number of connected services and the advent of IoT era, the
risk of cybersecurity attacks is higher than ever. Medical devices and services are
not spared by this threat and consequences of an attack on your device can be
disastrous:

• Risks for patients ’safety
• Risk of patient data theft
• Recall of your product with dramatic consequences for your company’s

reputation and return merchandise authorization costs.

After being neglected for a long time, Cybersecurity is now a critical part of every
project. When starting a new project, you must now keep in mind that
Cybersecurity is not a feature that you can add at the end, it must be considered
at a very early stage of your product design, integrated into your development
process and followed-up once your device is on the market.

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 2 / 24

3. Table of content

1. Goal of this publication .. 1

2. Introduction .. 1

3. Table of content ..2

4. Safety vs security... 4

5. Good practices before applying security risk management 5

5.1. Controlled use of Third-Party components (SOUP, OTS, OS) 5

5.2. Smart use of cryptography ... 6

5.3. Confidential computing ... 6

5.4. Remove compilation warnings ... 6

5.5. Use of static code analyzer ... 7

5.6. Never trust external inputs .. 7

5.7. Use of hardware security features.. 8

5.8. Pay attention to memory management ... 8

5.9. Identify and protect sensitive data ... 8

6. Software lifecycle security process ... 9

6.1. Write/Update Software Security Risk Management Plan 11

6.2. Identify Security Risks .. 12

6.2.1. Scope of your device: data and communication functionalities 12

6.2.2. Scan for Common Weaknesses Enumeration (CWE) 13

6.2.3. Common Vulnerabilities and Exposures (CVE) identification 14

6.2.4. Threat modeling .. 15

6.2.5. Post-market security risk identification .. 16

6.3. Evaluate Security Risk Levels .. 17

6.3.1. Software security scoring scheme ... 17

6.3.2. Quantify security risk levels associated with identified threats 18

6.4. Identify Security Risk Control Measures ... 18

6.5. Implement Risk Control Measures ... 19

6.6. Verify efficacy and effectiveness of Risk Control Measures 20

6.6.1. Common Vulnerability testing .. 20

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 3 / 24

6.6.2. Malware testing ... 20

6.6.3. Malformed Input Testing .. 20

6.6.4. Penetration testing .. 21

6.6.5. Security risk management report ... 21

6.7. Release & Distribute Update ... 21

6.8. Market withdrawal and decommissioning ... 22

7. Regulatory landscape ... 22

8. Authors ... 23

9. Next steps ... 24

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 4 / 24

4. Safety vs security

It is important to distinguish safety from security concepts.

On one hand, medical devices must ensure patient safety while ensuring specific
performances. Safety risk control measures shall be implemented to reduce safety
risks to an acceptable level for users and patients and be as robust as possible
against failures that may lead to harm of various severities. Safety focuses on
protection of users and patients’ health.

On the other hand, medical devices must ensure software security. Security risk
control measures shall be implemented to reduce security risks associated with
malicious use of the device features. Security focuses on protection of data and
software systems.

Therefore, if you do not treat those two aspects properly you may develop safe but
unsecure devices or secure but unsafe devices.
In the worst case, an insufficient security level can lead to a major safety risk
(unexpected remote access to a life supporting device, upload of an unsafe
treatment, etc.), which may create critical effects on the patient (inappropriate
treatment received, death, etc.). Strong safety and security risk control measures
shall be implemented to make this situation impossible or highly improbable.

Debiotech recommends to:

• Make the distinction between safety and security in your risk management
processes and files.

• Implement strong safety risk control measures and verify their efficacy and
effectiveness. As much as reasonably possible use non software risk control
measures to avoid introducing software components with high-risk
classification.

• Implement strong security risk control measures and verify their efficacy
and effectiveness.

Figure 1. Simple illustration of security and safety concepts

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 5 / 24

5. Good practices before applying security risk management

To minimize your development work when applying a security risk management
process, you need to start minimizing software weaknesses at the beginning of
your development. This can be achieved by reducing as much as possible the
attack surface of your system. In this chapter multiple concepts allowing you to
start early on with good software security practices will be developed. Most of
those concepts impact your software and hardware architecture and are therefore
important to consider in the early stages of your development.

5.1. Controlled use of Third-Party components (SOUP, OTS, OS)

Operating Systems (OS), Software of Unknown Pedigree (SOUP), Off-The-Shelf
(OTS) components and your own code must only use strictly necessary features.
The more protocols, drivers or libraries are used, the higher the risk of introducing
vulnerabilities.

A quick look at the Common Vulnerabilities and Exposures databases searching for
“Linux Kernel” will return many CVEs related to specific drivers that are not
necessarily required on your device. This demonstrates that you should limit the
use of OS drivers to the strict minimum and block or deactivate unnecessary OS
features from your system.

Nowadays, many very useful libraries are available; however, very few of them have
been developed following a development process compliant with medical
regulations. It is not forbidden to use them, but you should carefully consider the
amount of work that will be needed to integrate such libraries in your system. To
avoid this additional and complex work of verifying and validating external libraries,
you should strongly limit their use and only use them when it is relevant for
performance and robustness objectives. These components must be isolated as
much as possible from safety-critical components.

Debiotech recommends to:

• Limit as much as possible the use of SOUP
• Limit as much as possible the use of protocols and drivers associated with

the operating systems of your system,
• Deactivate software communication features that you do not need.

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 6 / 24

5.2. Smart use of cryptography

Most of the connected devices need to use strong cryptography algorithms to
secure authentication, data storage, data communication and sometimes remote
computing. Cryptography is a highly expert field requiring very specific skills and
expertise. It is rarely the core of your team expertise, and you should just accept it.
Do not try to write your own cryptography algorithms; use state-of-the-art
available solutions instead. Well-tested solutions exist for all languages. In
embedded systems, “openssl” for Linux devices or “mbedTLS” for bare-metal
devices are good choices that will provide all needed features.

Be careful, using a bug-free library does not mean that bug-free cryptography will
be written. The documentation must be followed to use the functions as they are
intended to and for the algorithm to be correctly used (e.g., a common mistake is
to use a fixed initialization vector for AES encryption).

Finally, be aware that algorithms may become obsolete because a flaw is
discovered, or because it becomes too weak in comparison to the increase of
computational power. Only algorithms that are considered safe for the next
coming years must be used. The FIPS 140-2 Algorithm Lists can be checked to know
which algorithms are approved.

5.3. Confidential computing

If you are using remote computing, you should consider using confidential
computing for your remote computing server. Data encryption for storage and
transmission is now relatively popular. However remote or cloud-based computing
is usually decrypting data before processing it, so data can be accessible and
readable at the processor level. This can make your data accessible by attackers
or by the provider of your remote server infrastructure. New secure computing
technology exists (as for example the ones provided by: IBM, Microsoft Azure,
Google, Intel and Cysec) and it allows to render the entire data chain confidential:
from storage to computing, including transmission.

5.4. Remove compilation warnings

When developing your software, you might have the tendency to ignore warnings
in your build summary. Debiotech highly recommends fixing them systematically

http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 7 / 24

and quickly. They are the sign of weaknesses of your code that might not directly
impact the performance of your device but might reduce its robustness and
security. In addition, Debiotech recommends using compilation options that
protect against stack overflow and certain Return-oriented programming (ROP)
attacks when available.

5.5. Use of static code analyzer

It is recommended (UL-2900-2) to make use of static code analysis to reduce
software weaknesses like, for instance, the use of predictable random number
seed, the use of buffer above its limit, unmanaged processor exceptions, allow the
use of corrupted code, or allow the unexpected use of sensitive data (patient data,
treatment data or encryption keys).

5.6. Never trust external inputs

Every data external to the application must be checked before being processed.
This includes, but is not limited to, data files stored on disk, user input and data
coming from external communication channels (Wi-Fi, Bluetooth, …). For the
developers, it means that special care must be taken while handling this data:

• Input files must be authenticated using cryptographic signatures,
• User input must be checked. Some basic principles must be followed:

o Check data length before copying it into buffers to prevent
buffer/stack overflows,

o Use regex if a specific pattern for input is expected,
o Sanitize your inputs to prevent SQL injection.

• Always authenticate the peer before exchanging data. Secure protocols
must always be used (e.g., Transport Layer Security (TLS) 1.2 at least for
network communications)

• All the code impacted by external input must be identified and tested.
Fuzzing tools like American Fuzzy Lop (AFL) may help in this process.

Figure 2. AFL tool screenshot

https://github.com/google/AFL

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 8 / 24

5.7. Use of hardware security features

Where possible, use hardware encryption capability on the communication port
and specific and secure storage hardware components is recommended.

5.8. Pay attention to memory management

Memory management is critical in many applications. Programs that allow dynamic
memory allocation without protection may be dangerous as they can lead to errors
such as information disclosure or arbitrary code execution if not handled properly.
Developers must be aware of the problems related to memory leak, double free,
stack management, or dangling pointer dereference. Special care must be taken
when using dynamic memory. Prefer usage of smart pointers and test the code to
detect memory-related errors (using an instrumentation framework
like Valgrind may help).

Figure 3. IDE integrated Valgrind tool illustration

5.9. Identify and protect sensitive data

Medical devices and most embedded systems store their data in embedded MMC
(eMMC), or other type of flash memories, in an unencrypted form. Keep in mind that
even if the memory is soldered to the device, it is easy to read/write/modify its
content by soldering a couple of wires.

Figure 4. eMMC memory (image from sparkfun SD Sniffer)

https://valgrind.org/

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 9 / 24

It is often not feasible to encrypt the entire disk for performance reason, but all
personal health information (PHI) and secrets (e.g., tokens used to access web
APIs) must be encrypted. The cryptographic keys must be stored securely in a
dedicated area of the microcontroller if it provides anti-tamper protection, or in a
Secure Element (SE). A SE highly improves the device security by providing safe
storage, secure key generation and more. Another alternative is to strictly limit the
PHI stored on the device.

Figure 5. A SE memory (image: ATECC508A from Microchip)

6. Software lifecycle security process

Software security must be under control from the beginning of the realization of
the product to its end of life. It must consider the developed components as well
as the integrated third-party components and their environment of use.

Software security management activities must be applied at all stages of the
development and distribution of your medical device. A procedure for software
security management must be developed and a software security management
plan must be established for each project. Activities involved in this procedure are
illustrated in the next figure and will be used to structure the content of this
publication.

Figure 6. Security risk management process flow-chart

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 10 / 24

For each of these activities, the work to be executed depends on the phase of your
project. As a reminder, the typical phases of the development and marketing of a
medical device are illustrated in the next figure.

Figure 7. Medical Device development and marketing phases

In parallel of the application of this flowchart you will have to keep up to date the
list of files you generate to document your software security management
activities. This is usually done within the Design History File of your project. A
method, usually well appreciated by reviewers is to use tags within your Design
History File to quickly identify files associated with your software security
management activities.

In addition, at each transition from one phase to another, you must document the
files and activities you carried on in the previous phase and demonstrate the
completeness of your work and the non-ambiguity and consistency of the content
elaborated in the different files. This is usually performed through gate or phase
reviews.
Debiotech recommends to:

• Early in your development process, describe your procedure for software
security risk management,

• Refer your software security procedure in your design and development
procedure and describe for each phase of your D&D procedure the
applicable activities of the software security procedure,

• Based on the software security risk management procedure, create the
software security risk management plan for your project,

• Using gate or phase reviews of your D&D procedure, document the activities
and the files related to software security risk management,

• Keep up to date your Design History File with the files related to software
security risk management.

Idea Product
end of life

1st Approval &
Market access

Product update(s)

PHASES

Research &
Development

Design &
Develop

Verification
& Validation

Design
Transfer

Post-
market
Watch

Post-market
Product
Updates

Rejection

PHASES

Concept

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 11 / 24

6.1. Write/Update Software Security Risk Management Plan

Your activities for security risk management must be clearly identified and
integrated within your project plan. You can have a specific document to describe
your security risk management plan or integrate it into the project plan. This
document allows you to illustrate your planned activities, to document assigned
resources and expected timing and finally to demonstrate the completeness of
your approach in the handling of security risk management aspects. Your plan is a
living document that must be kept up to date. Change of plans are normal,
especially in early-stage projects but lack of, or clearly inaccurate plans, will be
challenged by reviewers. The Figure 8 illustrates typical activities to be included
within your security risk management plan.

Debiotech recommends you to:

• Write down your Security risk management plan at the beginning of the
project even if you lack visibility on its mandatory content.

• Keep it simple and high level. Details can come with other documents. The
importance is to document the different activities you will have to perform
at the different phases of your project, to establish a timeline and assign
resources.

• Preparing a template security risk management plan (or a template of
project plan integrating security risk management plan) as a complement to
your Design & Development procedure is a good way to ensure its use and
existence for each project you will launch. However, the filling of this
template to generate a plan specific to your project is necessary.

• Keep it up to date to ensure your plan is realistic.

Figure 8. Illustration of a software security risk management plan

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 12 / 24

6.2. Identify Security Risks

6.2.1. Scope of your device: data and communication functionalities

To identify the security risks associated with your device you need to establish
early in the design and development process your device communication
characteristics:

• The data you store and their location in your system,
• The communication channels you use, their protocols, the data and the

command they send or receive.

This will allow you to clearly identify the expected capabilities of your device and
then to identify the associated threats and vulnerabilities:

• Pure standalone device. Not connected to any server and exchanging data
via standard data storage hardware such as USB sticks or CD-ROM.

• Device within safe network infrastructure. Your device is only connected to
the local servers of the clinical center that uses it and can exchange data
internally, for example via the use of Pictures Archiving & Communication
Systems.

• Device with possible updates from remote servers. The only use of the
connection to internet and other servers is for update of the device.

• Device with remote monitoring and maintenance from remote servers. Your
system sends non-private data to an external server to perform system
monitoring and maintenance.

• Device transferring data to an external server to generate an encrypted
centralized database with similar devices.

• Device transferring data to an external server and using this server to
perform computation and receive results from those computations.

• Devices that can receive new therapies/prescriptions from a health care
professional via a remote server.

Debiotech recommends to:

• Identify, early in the development process, the data and communication
characteristics of your system.

• Minimize software weaknesses (Chapter Erreur ! Source du renvoi
introuvable.), Establish software security scoring scheme (Chapter 6.3.1),
perform threat modeling (Chapter 6.2.4) and mitigate your vulnerabilities
(Chapter 6.4Erreur ! Source du renvoi introuvable.).

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 13 / 24

Figure 9. Data, processors and memory location models

6.2.2. Scan for Common Weaknesses Enumeration (CWE)

The CWE is a list of common types of weaknesses that are typically found in
software. You can think of it as a dictionary of weaknesses that are found in
software. This list is maintained by MITRE, and it is freely accessible.
The most effective method to identify CWEs in your code is to use tools such as
Static Application Security Testing Tools (SAST tools). These tools scan the
source code just as a static code analysis tool would, but they identify potential
security issues instead of potential software bugs (some tools do both). These
tools are a great way to identify and prioritize the CWEs in your code.

SAST tools allowing to perform these tasks include but are not limited to:

• Perforce – Klocwork for C, C++, C# and Java,
• Parasoft – Parasoft Test for C, C++, .NET and Java,
• Micro Focus - Fortify which supports multiple operating systems and

languages,
• A list of existing tools is maintained by the OWASP (Source Code Analysis

Tools | OWASP Foundation)

Figure 10. Illustration of Fortify SAST including CWE classification

https://cwe.mitre.org/index.html
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 14 / 24

Debiotech recommends you to:
• Early on in your project execution, start using a SAST tool.
• If possible, make the SAST tool part of your continuous integration

environment and define criteria to prioritize the work according to the
criticality of the identified weaknesses.

6.2.3. Common Vulnerabilities and Exposures (CVE) identification

This activity is of critical importance for proper software security risk management
activities. It consists in the identification of the Common Vulnerabilities and
Exposures associated with the third-party libraries and the operating systems you
are using. Most of the libraries and software components you integrate within your
system provide this information and make it publicly available. However, this
information evolves with time. You need to frequently review these vulnerabilities
to ensure that your system is protected against recently discovered
vulnerabilities. You can do this review manually, but you will quickly benefit from
tools allowing you to do this automatically such as Software Composition Analysis
tools (SCA tools).

SCA tools allow you to perform the following tasks automatically based on your
source code or on your binaries:

• Software Bill Of Materials (SBOM) generation: identification of all the
libraries used, their versions and the associated licenses.

• Cybersecurity Bill Of Materials (CBOM) generation: identification of all the
Common Vulnerabilities and Exposures associated to your SBOM as for
example buffer overflows, SQL injection flaws, Authentication problems,
Access control issues and Insecure use of cryptography.

You can then focus on the review of those vulnerabilities, determine if they apply
or not to your system and if you must develop a patch to remove them. Please
remember that you must provide rationales to argue why you estimate that a
vulnerability is not applicable to your system.

SAST tools allowing to perform these tasks include but are not limited to:

• WhiteSource
• Black Duck
• JFrog Xray
• A list of existing tools is maintained by the OWASP (Software Composition

Analysis Tools | OWASP foundation)

https://owasp.org/www-community/Component_Analysis
https://owasp.org/www-community/Component_Analysis

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 15 / 24

Debiotech recommends you to:
• Early on in your project execution, integrate within your software

development infrastructure an SCA tool for SBOM and CBOM generation.
• Frequently use this SCA tool even if no change is made to your software to

stay up to date with latest identified vulnerabilities.
• Take the necessary time to identify which vulnerabilities are applicable to

your software and provide rationales justifying your position for non-
applicable vulnerabilities. For applicable ones, describe the patch you will be
developing and the way you will verify its efficacy.

6.2.4. Threat modeling

To identify vulnerabilities of your system, you must apply a threat modeling
approach. The first step is to list all the elements that will affect the security of your
system:

• Physical ports,
• Internal and external communications mechanisms,
• The list of third-party libraries used by the different communication and

authentication mechanisms,
• And more generally all valuable assets of your device.

Then, for each of these elements and assets you need to identify relevant threats.
A typical approach for this step consists in using an existing model such as STRIDE
or alternatives like LINDDUN or CIA Triad for example. When using STRIDE, for each
identified asset, you must evaluate the consequences of:

• Spoofing: The device/service/user is not the one it is supposed to be, like in
Man-in-the-Middle attacks,

• Tampering: Illegal access to your device, with hardware or software
modifications,

• Repudiation: Claiming to have not performed an action,
• Information disclosure: Expose sensitive information about your device or

private data,
• Denial of service: The device does not work as expected,
• Elevation of privilege: Gaining capabilities without authorization.

Finally for each threat, a severity score must be determined (Chapter 6.3.1) to
prioritize them.

https://en.wikipedia.org/wiki/STRIDE_(security)
https://www.linddun.org/
https://www.techrepublic.com/blog/it-security/the-cia-triad/

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 16 / 24

Dedicated tools exist to help with the threat modeling process, like “Microsoft
Threat Modeling tool” or OWASP “Threat Dragon”. These tools will help you to
graphically model your system, identify threats using STRIDE and generate a
report.

Figure 11. Threat model example using MS Threat Modeling

Debiotech recommends to:

• Follow established threats modelling approach such as STRIDE for example,
• Use threats modelling tools such as MS Threat Modeling to facilitate this

work.

6.2.5. Post-market security risk identification

Hackers evolve and improve their technics. The list of known vulnerabilities
increases with time and shall be reviewed periodically for your device. New critical
vulnerabilities might require developing or integrating a new security patch for
your software and distribute it to your users. Depending on the security risk level
you may have to react quickly, inform your users about the security risk and provide
a solution that can be quickly deployed.

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://owasp.org/www-project-threat-dragon/

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 17 / 24

6.3. Evaluate Security Risk Levels

6.3.1. Software security scoring scheme

To quantify your security risks and prioritize their handling, you need to apply a
clear security scoring scheme.

The Common Vulnerability Scoring System (CVSS), a standard commissioned by
US National Infrastructure Advisory Council (NIAC) in 2005 and maintained by the
International Forum for Incident Response and Security Teams (FIRST), has been
developed and made publicly available as well as an associated calculator allowing
you to simply quantify the level of risk associated with the identified vulnerabilities
(Common Vulnerability Scoring System Version 3.0 Calculator (first.org)).

Another calculator is provided by NIST and provide a more user-friendly interface
and visual graphics.

Another usable scoring system is DREAD, simpler than CVSS but providing less
detailed image of the exact nature of the vulnerability and risk.

These scoring systems and calculators can be used to quantify the initial level of
risk of each identified vulnerability and its level after mitigation(s) (Chapter 6.4).
The level of effort you put in minimizing each risk will depend on its initial score. To
do so, you shall define rules as illustrated in the next figure, that will give you a
systematic approach to the treatment of your identified vulnerabilities.

Figure 12. Security risk levels and associated actions.

https://www.first.org/cvss/
https://www.cisa.gov/niac
https://www.first.org/
https://www.first.org/cvss/calculator/3.0
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 18 / 24

6.3.2. Quantify security risk levels associated with identified threats

Based on the identified threats and the selected software security scoring
scheme, you can now quantify the risk level associated to each threat and
therefore prioritize their handling. You will therefore obtain threats of different
levels and the next steps will depend on their risk level.

Debiotech recommends defining the following rules:
For medium and low-level threats, you should reduce risk as reasonably practicable
while it is mandatory for higher threat levels. If no risk control measure is defined
for a given threat a rationale must be provided to explain why this threat cannot be
reduced further with reasonably acceptable efforts. In some case, some critical
and high threat levels might impact the critical performance of your device and
they could be accepted as they are if the ratio benefits/risks remain largely in favor
of the patient. In this case a clear and detailed rationale must be provided.

6.4. Identify Security Risk Control Measures

To control the security risks associated with your system, you must develop
security risk control measures, also often called mitigations. Those mitigations can
be of many different types and their impact on the software security risk levels
depends on their characteristics.

Usually, external risk control measures are highly recommended as they allow to
minimize the risks associated to your system without impact it directly. An example
of an external risk control measures could be that your system shall be stored in a
room only accessible to authorized persons. Those mitigations can be very robust
and relatively easy to put in place.

Hardware related risk control measures are also usually highly appreciated for
the level of security they bring. For example, to protect sensitive data, you can
record them on a secured and a dedicated memory (trust platform), only
accessible through a dedicated communication port and using encryption and
authentication. Also, secure boot loader is often required for medical devices with
a high-risk class.

Typical software related risks control measures include the use of strong
passwords, double identifications, and use of privileges to manipulate data in the
devices. Other usual security risk control measures, more hidden to the users, are

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 19 / 24

the use of encrypted data transmission and the check of the authenticity of the
product code. Note that robust encryption technics shall be used. They are listed
in NIST FIPS 140-2 Appendix A.

Figure 13. Threat identification and mitigation example

6.5. Implement Risk Control Measures

Once software security risk control measures are identified and their impact
evaluated, it is now time to implement them. This can represent a significant
amount of work. It is highly recommended to use existing and robust libraries for
standard technics as authentication and encryption. However, this might add new
libraries and therefore new vulnerabilities to your system. In the case those
security risks might be associated with critical safety risks, this will impact the
software risk class associated to this library. This can induce a complex situation
where the library you used must be compliant with class B or class C software
classification according to IEC 62304, which is rarely, if not never, the case.
Debiotech recommends:

• Using non software risk control measures as much as possible to reduce
software security or safety risks.

• Clearly separating code dedicated to security feature from those for safety
or performance features.

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 20 / 24

6.6. Verify efficacy and effectiveness of Risk Control Measures

Security risk control measures shall be verified. Their testing shall be part of the
software verification plan of the product according to IEC 62304. While some
dedicated tests shall be developed for the security risk control measures specific
to your product, others are more standard:

6.6.1. Common Vulnerability testing

Check that all identified common vulnerabilities associated to the use third party
components are handled either through the integration of a patch or through the
provision of a clear rationales explaining their non-applicability.

6.6.2. Malware testing

Ensure that no malware is embedded in your software, in the third-party
components or in the used operating system using malware screening software.

6.6.3. Malformed Input Testing

Every check developed to validate external data must be verified. This includes, but
is not limited to:

• Verify proper behavior of input files authentication using cryptographic
signatures,

• Verify that the product is not impacted by malformed inputs (reject data
making no sense) which could result in an attempt of hacking,

• Verify proper behavior of peer authentication before data exchange,
• Verify proper behavior of code impacted by external input(s). Fuzzing tools

like American Fuzzy Lop (AFL) may help in this process.

Figure 14. AFL Screenshot

https://github.com/google/AFL

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 21 / 24

6.6.4. Penetration testing

The best way to verify that all vulnerabilities are correctly fixed is to request a
penetration testing lab to confirm that none of them can be exploited.
Structured penetration testing is required by UL 2900-1, section 16. Penetration
testing should be run by an independent lab. Such test should be first performed
as “Black-box testing”, which means that testers will try to find and exploit
vulnerabilities with no (or very little) knowledge of the device. Then, “White-box”
testing should be run, where all valuable information (even source code or
schematics if necessary) is provided. Also, providing the list of identified CVEs will
help the lab confirm that the device does not contain weaknesses.

6.6.5. Security risk management report

A security risk management report shall be generated to summarize the plan
followed, the activities performed, and the list of documents generated including
a list of the identified threats (from your own device and from third-party
components), the associated risk control measures or rationales for their absence,
the results of the verification campaign and the instructions for use related to
security.

The security risk management plan mentioned in the report must define what are
the next expected actions regarding security (improvements and periodic
reviews).

It may happen that some of your threats or vulnerabilities verification is not fully
successful: this shall be documented within a list of known anomalies. For those
remaining anomalies, clear and convincing rationales shall be provided to argue
why those anomalies are acceptable for the ongoing software release. If they are
not acceptable, those anomalies shall be fixed before releasing the software.

6.7. Release & Distribute Update

Once your system is fully verified and validated, the software version can be
released and made available for design transfer and manufacturing. If your system
is a standalone software, this means that you can generate your installation files
based on this software release. However, the efficacy and effectiveness of the
installation files must be validated through the verification of the proper behavior
of the software installed using these installation files. This can be done using a

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 22 / 24

sub-set of your verification tests: the installation, operational and performance
qualification tests.

Once the proper behavior of the installation files verified, you can finalize your
technical documentation for submission to authorities and/or inform your users
about the availability of security updates for their installed software. The
procedure and tools for such software security update shall be already available to
your customers.

Debiotech recommends:

• Integrating within your system a way to inform your users that a security
update is available.

• Integrating within your system a way to easily update their product version
with the new one.

6.8. Market withdrawal and decommissioning

The security risk management plan shall also include actions required when
decommissioning a device. Those actions shall ensure that no sensitive data
remain accessible to possible technical or customer services after
decommissioning of the device.

7. Regulatory landscape

From a regulatory standpoint, data protection and data privacy are usually treated
in the same texts. Data security on its side has its own legislations. The applicable
regulations usually depend on the type of data: health-related data are usually
associated with stronger requirements in term of privacy and security.

Data protection & privacy:

• Europe: GDPR (Europe),
• Switzerland: Federal Act on Data Protection,
• US: HIPAA and numerous data protection laws enacted on both the federal

and state levels.

Data security:
• US: HIPAA
• International:

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 23 / 24

o UL-2900
o ISO 27000 Series
o NIST Cybersecurity Framework

8. Authors

This publication has been written and reviewed by:

Rémi Charrier
Business Development Director
r.charrier@debiotech.com

João Budzinski
R&D Director

j.budzinski@debiotech.com

Laurent Colloud
Software Project Manager
l.colloud@debiotech.com

Gilles Forconi
Software Quality Manager
g.forconi@debiotech.com

mailto:r.charrier@debiotech.com
mailto:j.budzinski@debiotech.com
mailto:l.colloud@debiotech.com
mailto:g.forconi@debiotech.com

 How to handle Cybersecurity? 24 March 2022

DBT/PUB_2022_03_24 Page 24 / 24

9. Next steps

Debiotech is glad to have the opportunity to share its knowledge with innovative
companies from the MedTech industry. Your feedbacks on this publication are
welcome and will be used to update it or to create new publications on topics you
care about.

Continue your education on medical device development by:

• Accessing Debiotech historic publications:
https://www.debiotech.com/news-grid/

• Following Debiotech on LinkedIn to be notified on new publications:
https://www.linkedin.com/company/debiotech-sa

• Contacting us to ask a question or request personalized support:
contact@debiotech.com

Debiotech would be proud to be your partner and support you with:

• Medical device design & development services:
o Software: Digital Health, Firmware, Embedded, SaMD, Mobile

Application, Design and Verification activities
o Electronics: Design, Verification and Validation
o Mechanics: Design for micro-fabrication & fluidics systems
o Supply chain development and optimization

• Support in medical innovation management:

o Market analysis and segmentation
o IP management
o Business plan consolidation
o Partnership development

http://www.debiotech.com/news-grid/
https://www.linkedin.com/company/debiotech-sa
mailto:contact@debiotech.com

	1. Goal of this publication
	2. Introduction
	3. Table of content
	4. Safety vs security
	5. Good practices before applying security risk management
	5.1. Controlled use of Third-Party components (SOUP, OTS, OS)
	5.2. Smart use of cryptography
	5.3. Confidential computing
	5.4. Remove compilation warnings
	5.5. Use of static code analyzer
	5.6. Never trust external inputs
	5.7. Use of hardware security features
	5.8. Pay attention to memory management
	5.9. Identify and protect sensitive data

	6. Software lifecycle security process
	6.1. Write/Update Software Security Risk Management Plan
	6.2. Identify Security Risks
	6.2.1. Scope of your device: data and communication functionalities
	6.2.2. Scan for Common Weaknesses Enumeration (CWE)
	6.2.3. Common Vulnerabilities and Exposures (CVE) identification
	6.2.4. Threat modeling
	6.2.5. Post-market security risk identification

	6.3. Evaluate Security Risk Levels
	6.3.1. Software security scoring scheme
	6.3.2. Quantify security risk levels associated with identified threats

	6.4. Identify Security Risk Control Measures
	6.5. Implement Risk Control Measures
	6.6. Verify efficacy and effectiveness of Risk Control Measures
	6.6.1. Common Vulnerability testing
	6.6.2. Malware testing
	6.6.3. Malformed Input Testing
	6.6.4. Penetration testing
	6.6.5. Security risk management report

	6.7. Release & Distribute Update
	6.8. Market withdrawal and decommissioning

	7. Regulatory landscape
	8. Authors
	9. Next steps

